Combining Wikipedia-Based Concept Models for Cross-Language Retrieval

نویسندگان

  • Benjamin Roth
  • Dietrich Klakow
چکیده

As a low-cost ressource that is up-to-date, Wikipedia recently gains attention as a means to provide cross-language brigding for information retrieval. Contradictory to a previous study, we show that standard Latent Dirichlet Allocation (LDA) can extract cross-language information that is valuable for IR by simply normalizing the training data. Furthermore, we show that LDA and Explicit Semantic Analysis (ESA) complement each other, yielding significant improvements when combined. Such a combination can significantly contribute to retrieval based on machine translation, especially when query translations contain errors. The experiments were perfomed on the Multext JOC corpus und a CLEF dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit vs. Latent Concept Models for Cross-Language Information Retrieval

The field of information retrieval and text manipulation (classification, clustering) still strives for models allowing semantic information to be folded in to improve performance with respect to standard bag-of-word based models. Many approaches aim at a concept-based retrieval, but differ in the nature of the concepts, which range from linguistic concepts as defined in lexical resources such ...

متن کامل

Explicit Versus Latent Concept Models for Cross-Language Information Retrieval

The field of information retrieval and text manipulation (classification, clustering) still strives for models allowing semantic information to be folded in to improve performance with respect to standard bag-of-word based models. Many approaches aim at a concept-based retrieval, but differ in the nature of the concepts, which range from linguistic concepts as defined in lexical resources such ...

متن کامل

Advertising Keyword Suggestion Using Relevance-Based Language Models from Wikipedia Rich Articles

When emerging technologies such as Search Engine Marketing (SEM) face tasks that require human level intelligence, it is inevitable to use the knowledge repositories to endow the machine with the breadth of knowledge available to humans. Keyword suggestion for search engine advertising is an important problem for sponsored search and SEM that requires a goldmine repository of knowledge. A recen...

متن کامل

Combining lexical and statistical translation evidence for cross-language information retrieval

This paper explores how best to use lexical and statistical translation evidence together for CrossLanguage Information Retrieval (CLIR). Lexical translation evidence is assembled from Wikipedia and from a large machine readable dictionary, statistical translation evidence is drawn from parallel corpora, and evidence from co-occurrence in the document language provides a basis for limiting the ...

متن کامل

Using Wikipedia and Wiktionary in Domain-Specific Information Retrieval

The main objective of our experiments in the domain-specific track at CLEF 2008 is utilizing semantic knowledge from collaborative knowledge bases such as Wikipedia and Wiktionary to improve the effectiveness of information retrieval. While Wikipedia has already been used in IR, the application of Wiktionary in this task is new. We evaluate two retrieval models, i.e. SR-Text and SR-Word, based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010